
Spring 2020 Math 569X:15 1/4

Chapters 5.3–5.5 Minimum Spanning Tree

A spanning tree of a connected graph G is a spanning subgraph that is a tree.

Theorem. Every connected graph has a spanning tree.

1: Prove the theorem.
Hint: Remove edges in cycles.

Solution: Proof by induction on the number of edges. Let G be a connected graph.
If |E(G)| = |V (G)| − 1, then G is a tree. Notice that this is the minimum number
of edges a connected graph on |V (G)| vertices can have. It is the base case of the
induction. Now assume |E(G)| > |V (G)| − 1. Hence G contains a cycle C. Pick any
edge e ∈ E(C). Notice that G − e is still connected. By induction, it has a spanning
tree T , which is also a spanning tree for G.

Problem: Connect cities V with optic cables. For every pair of cities, it is known if the cable can be built and
the cost of building it c :

(
V
2

)
→ R. Which cables should be built so that the cities are connected and the total

building cost is minimized?
(The original application was with electrification.)

2: Solve the cities and cable problem for the following diagram of cities. Cost is number next to each edge. If
an edge is missing, it is not possible to build the cable (think the cost is astronomical).

1 2 5

6 3 9

11 7 19

13

15

22

10

14

17

12

4

Formal definition of our problem: Minimum spanning tree problem
Input: Graph G = (V,E) and costs c : E → R.
Output: Spanning tree T of minimum cost.

A cut for X ⊂ V is the set of edges each with exactly one endpoint in X.

Theorem. Let G be a graph. If T is a spanning three of G, then the following are equivalent:

1. T is minimum spanning tree.

2. For every e = {x, y} ∈ E(G) \ E(T), no edge on the x-y-path in T has higher cost than e.

3. For every e ∈ E(T), e is a minimum cost edge of the cut between the connected components in T − e.

4. We can order E(T) = {e1, . . . , en−1} such that for each i there exists a set Xi ⊂ V (G) such that ei is the
min cost edge of the cut Xi and no previous edge is in the cut Xi.

cbna by Bernard Lidický, Following Matoušek-Nešetřil, Chapter 5.3–5.5

https://creativecommons.org/licenses/by-nc-sa/4.0/

Spring 2020 Math 569X:15 2/4

3: Show 1→ 2→ 3→ 4. Try 4→ 1 by taking T that satisfies 4 and T ? satisfying (1) and check how they can
differ.

Solution: See the book(s) for detailed solution.
(1) → (2): If 2 violated, T was not optimal by replacing an edge
(2) → (3): if 3 violated, so is (2)
(3) → (4): take any ordering from (3), it gives (4). (4) → (1): T from (4) and T ?

optimum. Let ei be the first ei ∈ T , that is missing in T ?. Let the corresponding cut
for ei be Xi. Add ei to T ?, it contains a circuit, one other edge of the cut Xi that is in
T ? can be removed and cost of T ? decreases.

Kruskal’s (greedy) algorithm [1956]

1. sort edges of G such that c(e1) ≤ c(e2) ≤ · · · ≤ c(em)

2. set T = (V, ∅)

3. for i in 1 to m:
if T + ei does not contain a circuit, then T := T + e.

4: Do the steps of the algorithm on the graph with cities (note that the algorithm has 11 iterations where
edge is added since the tree has 11 edges). Denote the order of edges as they enter the spanning three.

1 2 5

6 3 9

11 7 19

13

15

22

10

14

17

12

4

1 2

3

4

5

6

7

8

9

10

11

5: Why is the output of the algorithm correct?

Solution: Satisfies condition 2.

cbna by Bernard Lidický, Following Matoušek-Nešetřil, Chapter 5.3–5.5

https://creativecommons.org/licenses/by-nc-sa/4.0/

Spring 2020 Math 569X:15 3/4

Jarńık’s [1930] and Prims [1957] algorithm

1. choose any v ∈ V and T = ({v}, ∅)

2. while T does not contain all vertices:
pick e of minimum cost that has exactly one endpoint in T and T := T + e

6: Do the steps of the algorithm on the graph with cities (note that the algorithm has 11 iterations since the
tree has 11 edges). Denote the order of edges as they enter the spanning three. Start with v being the left top
vertex.

1 2 5

6 3 9

11 7 19

13

15

22

10

14

17

12

4

11 10

4

7

9

5

2

6

3

1

8

v

7: Why is the output of the algorithm correct?

Solution: Satisfies condition 4.

Bor̊uvka’s [1928] algorithm

1. Let T = (V, ∅)

2. while T has more than one connected component:
in parallel, for every connected component C in T , pick e of minimum cost that has exactly one endpoint
in C and do T := T + e

8: Do the steps of the algorithm on the graph with cities. Note that one iteration always gives several edges
in. The number of iterations is not clear at the beginning. Denote the order of edges as they enter the spanning
three.

1 2 5

6 3 9

11 7 19

13

15

22

10

14

17

12

4

1 1

1

1

1

1

1

2

2

1

2

v

9: Why is the output of the algorithm correct?

Solution: Suppose it creates a cycle. The we get a contradiction with the choice of
the edges. But we run into troubles if edges have the same weights. Small trap.

cbna by Bernard Lidický, Following Matoušek-Nešetřil, Chapter 5.3–5.5

https://creativecommons.org/licenses/by-nc-sa/4.0/

Spring 2020 Math 569X:15 4/4

Algorithmic note: Which algorithm is fastest?

The complexity of an algorithm is counted in the number of operations performed by the CPU.

Count how many times each vertex and edge is used. Ignoring the constants, we use O(·) notation and count
how many times the algorithm touches each edge or vertex.

Estimate the complexity of Kruskal’s algorithm given a graph with m edges and n vertices.

• sorting takes O(m log(m))

• for cycle is repeated up to m times

• test for a circuit can be done in O(n) time

Total time: O(m log(m) + mn). Better implementation can do O(m log(n)).

Jarńık’s algorithm can be implemented in O(m + n log(n)).

More effective algorithms exists if weights are integers, graph is planar,

cbna by Bernard Lidický, Following Matoušek-Nešetřil, Chapter 5.3–5.5

https://creativecommons.org/licenses/by-nc-sa/4.0/

